首页 | 本学科首页   官方微博 | 高级检索  
     

基于蚁群算法优化的盲信号分离
引用本文:华容. 基于蚁群算法优化的盲信号分离[J]. 计算机应用与软件, 2007, 24(8): 21-22,37
作者姓名:华容
作者单位:上海应用技术学院机械与自动化工程学院,上海,200235
摘    要:
在过程信号的去噪中,应用较新的盲信号神经网络分离(BSS)的方法,但盲信号分离神经网络存在容易陷入局部极小点、收敛速度慢的缺点.为此进一步采用蚁群算法(Ant Colony Algorithm ,简称ACA)优化盲信号分离神经网络权值的初值,将蚁群算法与神经网络(HJNN)结合形成AC-HJNN算法,可迅速得到最佳盲信号分离神经网络的权值矩阵,实现对过程信号的去噪.仿真实验表明:用AC-HJNN算法,可兼有神经网络广泛映射能力和蚁群算法快速全局收敛的性能.

关 键 词:蚁群算法  神经网络  盲分离  过程信号
修稿时间:2006-09-15

BLIND SIGNAL SEPARATION BASED ON OPTIMIZATION OF ANT COLONY ALGORITHM
Hua Rong. BLIND SIGNAL SEPARATION BASED ON OPTIMIZATION OF ANT COLONY ALGORITHM[J]. Computer Applications and Software, 2007, 24(8): 21-22,37
Authors:Hua Rong
Affiliation:School of Mechanical and Automation Engineering,Shanghai Institute of Technology,Shanghai 200235, China
Abstract:
One of the main weak-points of the blind separation algorithm of HJNN is that the optimal procedure is easily stacked into the local minimal value,which causes slow convergence.Based on ant colony algorithm(ACA),AC-HJNN algorithm is proposed to optimize the initial value of the weight of HJNN so as to obtain the optimum weight matrix quickly and realize the denoising of the process signal.The comparison between the two algorithms is given with experiment.
Keywords:Ant colony algorithm Neural network Blind separation Process signal
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号