首页 | 本学科首页   官方微博 | 高级检索  
     


Comparison between meteorological re-analyses from ERA-Interim and MERRA and measurements of daily solar irradiation at surface
Affiliation:1. MINES ParisTech, Center for Observation, Impacts, Energy, BP 207, 06904 Sophia Antipolis Cedex, France;2. Transvalor, Mougins, France
Abstract:
This paper compares the daily solar irradiation available at surface estimated by the MERRA (Modern-Era Retrospective Analysis for Research and Applications) re-analysis of the NASA and the ERA-Interim re-analysis of the European Center for Medium-range Weather Forecasts (ECMWF) against qualified ground measurements made in stations located in Europe, Africa and Atlantic Ocean. Using the clearness index, also known as atmospheric transmissivity or transmittance, this study evidences that the re-analyses often predict clear sky conditions while actual conditions are cloudy. The opposite is also true though less pronounced: actual clear sky conditions are predicted as cloudy. This overestimation of occurrence of clear sky conditions leads to an overestimation of the irradiation and clearness index by MERRA. The overall overestimation is less pronounced for ERA-Interim because the overestimation observed in clear sky conditions is counter-balanced by underestimation in cloudy conditions. The squared correlation coefficient for clearness index ranges between 0.38 and 0.53, showing that a very large part of the variability in irradiation is not captured by the re-analyses. Within an irradiation homogeneous area, the variability of the bias, root mean square error and correlation coefficient are surprisingly large. MERRA and ERA-Interim should only be used in solar energy with proper understanding of the limitations and uncertainties. In regions where clouds are rare, e.g. North Africa, MERRA or ERA-Interim may be used to provide a gross estimate of monthly or yearly irradiation. Satellite-derived data sets offer less uncertainty and should be preferred.
Keywords:Meteorology  Solar radiation  Solar energy  Re-analyses  Measurements  Validation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号