首页 | 本学科首页   官方微博 | 高级检索  
     


Out-of-Core and Dynamic Programming for Data Distribution on a Volume Visualization Cluster
Authors:S Frank  A Kaufman
Affiliation:Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
Abstract:Ray directed volume-rendering algorithms are well suited for parallel implementation in a distributed cluster environment. For distributed ray casting, the scene must be partitioned between nodes for good load balancing, and a strict view-dependent priority order is required for image composition. In this paper, we define the load balanced network distribution (LBND) problem and map it to the NP-complete precedence constrained job-shop scheduling problem. We introduce a kd-tree solution and a dynamic programming solution. To process a massive data set, either a parallel or an out-of-core approach is required. Parallel preprocessing is performed by render nodes on data, which are allocated using a static data structure. Volumetric data sets often contain a large portion of voxels that will never be rendered, or empty space. Parallel preprocessing fails to take advantage of this. Our   slab-projection slice, introduced in this paper, tracks empty space across consecutive slices of data to reduce the amount of data distributed and rendered. It is used to facilitate out-of-core bricking and kd-tree partitioning. Load balancing using each of our approaches is compared with traditional methods using several segmented regions of the Visible Korean data set.
Keywords:Distributed visualised load balancing  partitioning  volume visualization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号