The clinical skills of community psychiatric nurses working with patients who have severe and enduring mental health problems: an empirical analysis |
| |
Authors: | SM Devane G Haddock S Lancashire I Baguley T Butterworth N Tarrier A James P Molyneux |
| |
Affiliation: | Department of Chemistry, University of Illinois at Urbana-Champaign, USA. |
| |
Abstract: | Both cis-[Pt(NH3)2(4-Me-Py)Cl]+ and trans-[Pt(NH3)2(4-Me-Py)Cl]+ bind DNA covalently at the N7 site of guanine residues forming mono-dentate adducts. However, like cisplatin and transplatin, only the cis isomer has anti-cancer activity, whereas the trans-isomer does not. In order to understand the molecular basis of the different activities associated with cis-[Pt(NH3)2(4-Me-Py)Cl]+ and trans-[Pt(NH3)2(4-Me-Py)Cl]+, the interactions of these two platinum compounds with the DNA heptamer CCTG*TCC:GGACAGG duplex (G* is the platinated guanine) have been examined. The reaction rate of cis-[Pt(NH3)2(4-Me-Py)Cl]+ with the single-stranded CCTGTCC is significantly faster than that of the trans isomer. The solution structure of the platinum-DNA adducts has been studied by two-dimensional NMR spectroscopy. Both the cis-platinum adducts and the trans-platinum adducts destabilize the DNA duplex significantly. The melting temperature (Tm) of the platinated heptamer duplex is estimated to be 10 degrees C lower than for the unplatinated duplex by NMR. At 2 degrees C, the base pairs located on the 5' side of the oligonucleotide, beyond the platinum lesion site, are disrupted. Over time, the platinum-DNA complex decomposes and the cis-[Pt(NH3)2(4-Me-Py)] platinum complex is gradually detached from DNA. No interstrand crosslinking is observed. The biological implications of the structural studies are discussed. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|