首页 | 本学科首页   官方微博 | 高级检索  
     

微波协同氧化锆@碳纳米管强化果糖制5-羟甲基糠醛
引用本文:慕诗芸,刘凯,吕孝琦,矫义来,李鑫钢,李洪,范晓雷,高鑫.微波协同氧化锆@碳纳米管强化果糖制5-羟甲基糠醛[J].化工进展,2022,41(11):5858-5869.
作者姓名:慕诗芸  刘凯  吕孝琦  矫义来  李鑫钢  李洪  范晓雷  高鑫
作者单位:1.天津大学化工学院,精馏技术国家工程研究中心,天津 300350;2.物质绿色创造与制造海河实验室,天津 300192;3.中国科学院金属研究所,辽宁 沈阳 110016;4.曼彻斯特大学工程学院化学工程系,英国 曼彻斯特 M13 9PL
基金项目:欧盟“地平线2020”研究与创新基金(872102);物质绿色创造与制造海河实验室项目
摘    要:糖类催化转化是生产生物质基燃料和高附加值化学品的重要途径,而微波能量的使用可使这一过程更具商业可行性。本文探究了微波辐射下微波响应型催化剂碳纳米管负载氧化锆[ZrO2/MWCNTs(C)]催化的果糖高效分解制5-羟甲基糠醛(5-HMF)过程。首先,采用水热法制备了性能优异的氧化锆@碳纳米管催化剂,并对其进行表征;进一步考察了催化剂用量、果糖浓度、反应温度和反应时间对反应产物5-HMF收率的影响,并通过调节各组分在反应过程中的实际含量,探究微波强化的作用机理。研究结果表明在相对温和的条件下(120℃、常压),微波辐射下的5-HMF收率(约74%)远高于常规加热条件下的5-HMF收率(约31%);采用最佳ZrO260/CNTs用量(ZrO2质量分数约为60%),微波场中,140℃常压条件下反应10min,可以实现约98%的果糖转化率和92%的5-HMF收率。通过探究载体吸波性能与活性位点催化性能之间的耦合匹配关系,揭示了微波协同催化过程强化机理归因于具有强吸波性能碳质载体的选择性加热和活性位点ZrO2之间的协同耦合作用。

关 键 词:微波辐射  催化  多壁碳纳米管  氧化锆  果糖转化  5-羟甲基糠醛  
收稿时间:2022-02-06

Conversion of fructose to 5-hydroxymethylfurfural catalyzed by microwave-assisted zirconia@carbon nanotubes
MU Shiyun,LIU Kai,LYU Xiaoqi,JIAO Yilai,LI Xingang,LI Hong,FAN Xiaolei,GAO Xin.Conversion of fructose to 5-hydroxymethylfurfural catalyzed by microwave-assisted zirconia@carbon nanotubes[J].Chemical Industry and Engineering Progress,2022,41(11):5858-5869.
Authors:MU Shiyun  LIU Kai  LYU Xiaoqi  JIAO Yilai  LI Xingang  LI Hong  FAN Xiaolei  GAO Xin
Abstract:Catalytic conversion of saccharides is a promising way for the production of biomass-based fuel and high value-added chemical, and the utilization of microwave energy can make this process more commercially viable. In this paper, the efficient decomposition for fructose to 5-hydroxymethylfurfural (5-HMF) catalyzed over carbon nanotube-supported zirconia ZrO2/MWCNTs(C)] as a microwave response catalyst under microwave irradiation was investigated. Firstly, hydrothermal synthesis method was used to synthetize ZrO2@MWCNTs(C) catalysts with high performance and then, they were characterized. Moreover, the effects of catalyst dosage, fructose concentration, reaction temperature and reaction time for the yield of 5-HMF were further investigated and lastly, by adjusting the participation of each component for composite catalyst during reaction, the microwave strengthening mechanism was revealed. Under a mild MW condition (at 120℃, atmospheric pressure), high 5-HMF yield about 74% after 10min reaction time was achieved which was significantly higher than that obtained under the conventional heating about 31%. With the optimum dosage of ZrO260/CNTs (50%), about 98% fructose conversion and about 92% 5-HMF yield could be achieved with microwave irradiation at 140℃ and atmospheric pressure for 10min. By exploring the coupling matching relation between the absorption performance of the supporting and the catalytic performance of the active site, the strengthening mechanism of the microwave synergistic catalytic process was revealed, which may be attributed to the combination of selective heating for carbon supporting and the active site of zirconia.
Keywords:microwave irradiation  catalysis  multi-walled carbon nanotubes  zirconia  fructose dehydration  5-hydroxymethylfurfural  
点击此处可从《化工进展》浏览原始摘要信息
点击此处可从《化工进展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号