首页 | 本学科首页   官方微博 | 高级检索  
     


Fingerprint registration by maximization of mutual information.
Authors:Lifeng Liu  Tianzi Jiang  Jianwei Yang  Chaozhe Zhu
Affiliation:National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China. lliu@ucalgary.ca
Abstract:
Fingerprint registration is a critical step in fingerprint matching. Although a variety of registration alignment algorithms have been proposed, accurate fingerprint registration remains an unresolved problem. We propose a new algorithm for fingerprint registration using orientation field. This algorithm finds the correct alignment by maximization of mutual information between features extracted from orientation fields of template and input fingerprint images. Orientation field, representing the flow of ridges, is a relatively stable global feature of fingerprint images. This method uses the statistics and distribution of global feature of fingerprint images so that it is robust to image quality and local changes in images. The primary characteristic of this method is that it uses this stable global feature to align fingerprints, and that its behavior may resemble the way humans compare fingerprints. Experimental results show that the occurrence of misalignment is dramatically reduced and that registration accuracy is greatly improved at the same time, leading to enhanced matching performance.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号