首页 | 本学科首页   官方微博 | 高级检索  
     

变形抗力预测模型及其应用研究
引用本文:陈爱玲. 变形抗力预测模型及其应用研究[J]. 计算机集成制造系统, 2007, 13(9): 1816-1819
作者姓名:陈爱玲
作者单位:山东经济学院,信息管理学院,山东,济南,250014
摘    要:
为提高变形抗力的预测精度,提出了一种基于混合最小二乘支持向量机和数学模型的组合方法.在该方法中,最小二乘支持向量机的参数通过基于退火策略的自适应粒子群优化算法自动获得.仿真实验结果表明,该组合方法不仅能够重现样本数据的变形抗力,还能非常精确地预测非样本数据.通过与其它文献中常用方法的比较发现,该方法在变形抗力预测的有效性和精确性方面都有很大提高.

关 键 词:最小二乘支持向量机  粒子群优化算法  模拟退火  变形抗力  数学模型
文章编号:1006-5911(2007)09-1816-04
收稿时间:2006-07-31
修稿时间:2007-05-14

Flow stress prediction model and its application
CHEN Ai-ling. Flow stress prediction model and its application[J]. Computer Integrated Manufacturing Systems, 2007, 13(9): 1816-1819
Authors:CHEN Ai-ling
Affiliation:School of Information Management, Shandong Economic University, Jinan 250014, China
Abstract:
To improve the prediction accuracy of the flow stress,a hybrid model based on the Hybrid Least Squares Support Vector Machine(HLS-SVM) and Mathematical Models(MM) was proposed.In HLS-SVM model,the optimal parameters of LS-SVM were obtained by self-adaptive Particle Swarm Optimization(PSO) based on Simulated Annealing(SA).Simulation experiment results revealed that this model could correctly recur to the flow stress in the sample data and accurately predict the non-sample data.The efficiency and accuracy of the predicted flow stress achieved by the proposed model were better than the methods used in most literature.
Keywords:least square support vector machine  particle swarm optimization  simulated annealing  flow stress  mathematical model
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号