首页 | 本学科首页   官方微博 | 高级检索  
     


Interactions between milk proteins and gellan gum in acidified gels
Authors:Carolina Siqueira Franco Picone  Rosiane Lopes da Cunha
Affiliation:Department of Food Engineering, Faculty of Food Engineering, University of Campinas (UNICAMP), P.O. Box 6121, 13083-862 Campinas-SP, Brazil
Abstract:The mechanical properties, microstructure and water holding capacity of systems formed from whey protein concentrate (0–3% WPC w/w), sodium caseinate (0–2% w/w), and gellan gum (0.1–0.3% w/w) in the coil or helix conformational state (Coil/Helix), were investigated. This polymer combination resulted in bi-polymeric or tri-polymeric systems, which were slowly acidified to pH 4.0 by the addition of GDL in order to favor electrostatic protein–polysaccharide interactions. The properties of the tri-polymeric systems differed considerably from the bi-polymeric ones. At high polymer concentrations the WPC-gellan samples showed incompatibility and microphase separation, which resulted in weaker and less deformable gels. However, in systems with coil gellan the incompatibility was less intense, which was attributed to the formation of electrostatic complexes between the protein and the polysaccharide during the mixing process. In caseinate–gellan systems, complex formation was observed and an increase in the gel mechanical properties as the caseinate concentration rose, although the water holding capacity decreased at higher gellan concentrations. The caseinate–gellan coacervate was not visualized in the tri-polymeric systems and the incompatibility between the biopolymers was intensified, although the mechanical properties were considerably higher than in the bi-polymeric gels.
Keywords:Gellan gum   Milk proteins   Mechanical properties   Polymer interactions
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号