首页 | 本学科首页   官方微博 | 高级检索  
     


Direct Discontinuous Galerkin Method and Its Variations for Second Order Elliptic Equations
Authors:Hongying Huang  Zheng Chen  Jin Li  Jue Yan
Affiliation:1.School of Mathematics, Physics and Information Science,Zhejiang Ocean University,Zhoushan,China;2.Key Laboratory of Oceanographic Big Data Mining and Application of Zhejiang Province,Zhoushan,China;3.Department of Mathematics,Iowa State University,Ames,USA;4.School of Science,Shandong Jianzhu University,Jinan,China
Abstract:In this paper, we study direct discontinuous Galerkin method (Liu and Yan in SIAM J Numer Anal 47(1):475–698, 2009) and its variations (Liu and Yan in Commun Comput Phys 8(3):541–564, 2010; Vidden and Yan in J Comput Math 31(6):638–662, 2013; Yan in J Sci Comput 54(2–3):663–683, 2013) for 2nd order elliptic problems. A priori error estimate under energy norm is established for all four methods. Optimal error estimate under \(L^2\) norm is obtained for DDG method with interface correction (Liu and Yan in Commun Comput Phys 8(3):541–564, 2010) and symmetric DDG method (Vidden and Yan in J Comput Math 31(6):638–662, 2013). A series of numerical examples are carried out to illustrate the accuracy and capability of the schemes. Numerically we obtain optimal \((k+1)\)th order convergence for DDG method with interface correction and symmetric DDG method on nonuniform and unstructured triangular meshes. An interface problem with discontinuous diffusion coefficients is investigated and optimal \((k+1)\)th order accuracy is obtained. Peak solutions with sharp transitions are captured well. Highly oscillatory wave solutions of Helmholz equation are well resolved.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号