摘 要: | 本文提出一种基于AdaBoost MH算法的有指导的汉语多义词消歧方法,该方法利用AdaBoost MH算法对决策树产生的弱规则进行加强,经过若干次迭代后,最终得到一个准确度更高的分类规则;并给出了一种简单的终止算法中迭代的方法;为获取多义词上下文中的知识源,在采用传统的词性标注和局部搭配序列等知识源的基础上,引入了一种新的知识源,即语义范畴,提高了算法的学习效率和排歧的正确率。通过对6个典型多义词和SENSEVAL3中文语料中20个多义词的词义消歧实验,AdaBoost MH算法获得了较高的开放测试正确率(85.75%)。
|