首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of the mechanical performance of a composite multi-cell tank for cryogenic storage: Part I - Tank pressure window based on progressive failure analysis
Affiliation:1. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, PR China;2. School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, PR China;1. Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China;2. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China;3. Center for Composite Materials, University of Delaware, Newark, DE, 19716, United States;1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China;2. Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China;3. School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane 4001, Australia
Abstract:Understanding of the thermal and mechanical behaviour of conformal tanks when utilized in cryogenic fuel storage is considered crucial in the hypersonic aircraft sector. This behaviour is strongly dependent on the way the tank itself is designed. This study focuses on the effect of design on the performance of an innovative Type IV multi-spherical composite-overwrapped pressure vessel at both ambient and cryogenic conditions. A method to evaluate the required number of reinforcement rings at the intersections and thus avoid damage in those regions under pressurization is outlined. A thermo-mechanical FE-based model coupled with a progressive failure analysis (PFA) algorithm enables to evaluate the pressure window of the multi-sphere at ambient conditions. Additionally, a transient analysis -included in this study-is used to determine the different heat transfer mechanisms, temperature and strain evolution at the tank wall throughout cryogenic operation (chill-down, pressure cycling and purging). The temperature dependency of the tank wall materials is obtained by coupon testing and fitting functions and is hereby incorporated in the analysis. The most important outcome here is the absence of damage in the composite overwrap at cryogenic environments; this may be considered as a positive indication about the suitability of the Type IV multi-spherical COPVs for cryogenic storage.
Keywords:Cryogenic storage  Multi-cell tank  Progressive failure analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号