首页 | 本学科首页   官方微博 | 高级检索  
     


Development and modelling of a novel electricity-hydrogen energy system based on reversible solid oxide cells and power to gas technology
Affiliation:1. Department of Industrial Engineering, University of Salerno, Fisciano (Salerno), 84084 Italy;2. Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario, L1G 0C5, Canada
Abstract:Compared to the conventional thermal units and electrolytic devices, reversible fuel cells have very high efficiencies on both fuel cell mode of generating electricity and electrolysis mode of producing hydrogen or CHx. However, previous studies about fuel cells and its benefits of power to gas are not fully investigated in the electricity-gas energy system. Moreover, state-of-art studies indicate that hydrogen could be directly injected to the existing natural gas (NG) pipeline within an amount of 5%–20%, which are considered to make a slight influence on the natural gas technologies. This work proposes a novel electricity-hydrogen energy system based on reversible solid oxide cells (RSOCs) to demonstrate the future vision of multi-energy systems on integrating multiple energy carriers such as electricity, pure hydrogen, synthetic natural gas (SNG) and mixed gas of H2-natural gas. The P2G processes of RSOC are sub-divided modelled by power to H2 (P2H) and power to SNG (P2SNG). The co-electrolysis/generation processes and time-dependent start-up costs are considered within a unit commitment model of RSOC. The proposed electricity-hydrogen energy system optimization model is formulated as mixed-integer linear programming (MILP), where the H2-blended mixed gas flow is linearized by an incremental linearize relaxation technic. The aim of the optimization is to reduce the energy cost and enhance the system's ability to integrate sufficient renewables through NG networks. Besides quantified the benefits of renewable level and H2 injection limit on the P2G process, the numerical results show that RSOC combined with H2/SNG injection results in productive economic and environmental benefits through the energy system.
Keywords:Reversible solid oxide cells  Power to gas  Electricity-hydrogen energy system  Hydrogen injection
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号