首页 | 本学科首页   官方微博 | 高级检索  
     


A comparison of engineered cementitious composites versus normal concrete in beam-column joints under reversed cyclic loading
Authors:Fang Yuan  Jinlong Pan  Zhun Xu  C K Y Leung
Affiliation:1. Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University, Nanjing, 210096, China
2. Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong, China
Abstract:Engineered cementitious composites (ECC) are a class of high-performance fiber reinforced cementitious composite with strain hardening and multiple cracking properties. For a reinforced concrete member, substitution of conventional concrete with ECC can significantly improve the deformation characteristics in terms of reinforced composite tensile or shear strength and energy dissipation ability. In this paper, a number of RC/ECC composite beam-column joints have been tested under reversed cyclic loading to study the effect of substitution of concrete with ECC in the joint zone on the seismic behaviors of composite members. The experimental parameters include shear reinforcement ratio in the joint zone, axial load level on the column and substitution of concrete with ECC or not. According to the test results, for the specimens without shear reinforcement in the joint zone, substitution of concrete with ECC in the joint zone cannot change the brittle shear failure in the joint zone, but can significantly increase the load capacity and ductility of the beam-column joint specimens, as well as the energy dissipation ability due to high ductility and shear strength of ECC material. For the specimens with insufficient or proper shear reinforcement ratio, substitution of concrete with ECC in the joint zone can lead to failure mode change from brittle shear failure in the joint zone to a more ductile failure mode, i.e. flexural failure at the base of the beam, with increased load capacity, ductility and energy dissipation ability. Increase of axial load on column and shear reinforcement in the joint zone have little effect on seismic behaviors of the members when they failed by flexural failure at the base of beam. In a word, the substitution of concrete with ECC in the joint zone was experimentally proved to be an effective method to increase the seismic resistance of beam-column joint specimens.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号