首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波变换和LDA/FKT及SVM的人耳识别
引用本文:赵海龙,穆志纯. 基于小波变换和LDA/FKT及SVM的人耳识别[J]. 仪器仪表学报, 2009, 30(11)
作者姓名:赵海龙  穆志纯
作者单位:北京科技大学信息工程学院,北京,100083
基金项目:国家自然科学基金,北京市教委重点学科共建项目 
摘    要:
人耳识别技术是生物特征识别和人工智能领域的一个重要分支.针对人耳图像自身的特点并通过对现有方法的研究,本文提出了一种新的人耳识别方法,即先对人耳图像进行二维的离散小波分解,然后使用LDA/FKT算法对小波分解后得到的低频信息进行降维,进而获得图像的特征向量,最后采用支持向量机作为分类器对样本向量进行判别.实验证明,本文提出的方法不仅较好地解决了人耳识别中的小样本问题,而且还取得了比传统的PCA+LDA方法更高的识别率,是一种有效的人耳识别方法.

关 键 词:人耳识别  小波变换  线性判别分析  支持向量机

Human ear recognition based on wavelet transform, LDA/FKT and SVM
Zhao Hailong,Mu Zhichun. Human ear recognition based on wavelet transform, LDA/FKT and SVM[J]. Chinese Journal of Scientific Instrument, 2009, 30(11)
Authors:Zhao Hailong  Mu Zhichun
Abstract:
Human ear recognition is one of the important branches of biometrics and artificial intelligence. Considering human ear image characteristics and through research on methods in existence, the author proposes a new method in this paper, within which the low frequency sub-images are obtained by utilizing two-dimensional wavelet transform and the features are extracted by applying LDA/FKT to the sub-images and finally SVM is used as the classifier to make decision. Experimental results demonstrate that the new method can overcome the small sample size problem and also perform better than classical PCA+LDA method in accuracy, so it is a an effective human ear recognition method.
Keywords:LDA/FKT  human ear recognition  wavelet transform  linear discriminant analysis  LDA/FKT  support vector machine
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号