首页 | 本学科首页   官方微博 | 高级检索  
     


Controlled Evolution of Morphology and Microstructure in Laser Interference-Structured Zirconia
Authors:Claus Daniel  Beth L Armstrong  Jane Y Howe  Narendra B Dahotre
Affiliation:Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, Tennessee 37831-6083;
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996
Abstract:Tape-cast pseudo-cubic zirconia pellets were surface irradiated by two coherent interfering high-power short-pulse Nd:YAG laser beams. The interfering beams of the third harmonic with a wavelength of 355 nm of a 2.5-ns Q-switched laser produced a line-like intensity distribution with a periodic distance of 3.3 μm due to the selected angle between the beams. The resulting nonuniform surface heating produced a microstructure consisting of ultrafine-grained zirconia with a grain size of about 10 nm within the top 100–200 nm depth of the treated surface region due to the high cooling rates during short-pulse laser processing (up to 1010 K/s). The surface morphology closely followed the microperiodic heat treatment provided by the interfering laser beams. The pore size distribution within the periodic surface morphology ranged from a few nanometers to a maximum of half of the periodic line distances.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号