首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法的多传感器模糊随机信息融合方法
引用本文:胡昌振,谭惠民. 基于遗传算法的多传感器模糊随机信息融合方法[J]. 北京理工大学学报(英文版), 2000, 9(1): 49-54
作者姓名:胡昌振  谭惠民
作者单位:北京理工大学,机电工程与控制国家重点实验室,北京,100081;北京理工大学,机电工程与控制国家重点实验室,北京,100081
基金项目:GuanghuaScienceandTechnologyFoundation
摘    要:建立一种多传感器高维信息融合方法 .根据多传感器模糊随机信息融合的准则 ,完成融合参数编码、初始种群和适性函数建立以及基于模糊控制器的基因操作概率选择等的设计 ;对高维信息融合问题进行了探讨 ,并通过计算机仿真验证了方法的有效性 .针对速度方差为 1 6 4 ,加速度方差为 1 75的模拟运动目标跟踪问题 ,采用该方法的跟踪融合精度分别为速度方差 0 94 ,加速度方差 0 98.该方法能有效地提高配合的精度与可靠性

关 键 词:多传感器  数据融合  模糊随机  遗传算法
收稿时间:1999-06-17

Multisensor Fuzzy Stochastic Fusion Based on Genetic Algorithms
HU Chang-zhen and TAN Hui-min. Multisensor Fuzzy Stochastic Fusion Based on Genetic Algorithms[J]. Journal of Beijing Institute of Technology, 2000, 9(1): 49-54
Authors:HU Chang-zhen and TAN Hui-min
Affiliation:National Key Laboratory of Mechatronic Engineering and Control, Beijing Institute of Technology, Beijing 100081;National Key Laboratory of Mechatronic Engineering and Control, Beijing Institute of Technology, Beijing 100081
Abstract:To establish a parallel fusion approach of processing high dimensional information, the model and criterion of multisensor fuzzy stochastic data fusion were presented. In order to design genetic algorithm fusion, the fusion parameter coding, initial population and fitness function establishing, and fuzzy logic controller designing for genetic operations and probability choosing were completed. The discussion on the highly dimensional fusion was given. For a moving target with the division of 1 64 (velocity) and 1 75 (acceleration), the precision of fusion is 0 94 and 0 98 respectively. The fusion approach can improve the reliability and decision precision effectively.
Keywords:multisensor  data fusion  fuzzy random  genetic algorithm
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京理工大学学报(英文版)》浏览原始摘要信息
点击此处可从《北京理工大学学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号