摘 要: | 异构化是芳烃生产中的重要环节,提高异构化环节的建模和优化效率对工业生产有着重要意义。但是,直接使用机理模型的优化过程耗时较长,优化效率低。代理模型可以有效地对机理模型进行近似,而代理模型采样方法对模型精度有很大影响。提出了一种新的基于稀疏度和最邻近期望的自适应采样算法,该方法可以平衡全局搜索和局部搜索,通过求解优化问题找到反映函数关键信息的新采样点,再加入原始样本集中,使得代理模型精度不断提高。多个测试函数结果表明,相比于其他自适应采样算法,该算法能有效提升代理模型精度和建模效率。该算法在芳烃异构化环节代理模型中也得到了有效验证,与本文中其他算法对比,该算法模型误差减少5%以上,建模时间缩短30%以上。
|