首页 | 本学科首页   官方微博 | 高级检索  
     


Activation mechanisms on potassium hydroxide enhanced microstructures development of coke powder
Authors:Xiaojing Chen  Huirong Zhang  Yanxia Guo  Yan Cao  Fangqin Cheng
Affiliation:1.State Environmental Protection Key Laboratory on Efficient Resource-utilization Techniques of Coal Waste, Institute of Resources and Environmental Engineering, Shanxi Collaborative Innovation Center of High Value-added Utilization of Coal-related Wastes, Shanxi University, Taiyuan 030006, China;2.Institute for Combustion Science and Environmental Technology(ICSET), Western Kentucky University(WKU), Bowling Green, KY 42101, United States
Abstract:Coke powder is expected to be an excellent raw material to produce activated carbon because of its high carbon content. Potassium hydroxide (KOH), as an effective activation agent, was reported to be effective in activating coke powder. However, the microstructures development in the coke powder and its mechanisms when KOH was applied were still unclear. In this study, effects of KOH on the microstructure activation of coke powder were investigated using the surface area and pore structure analyzer, scanning electron microscope (SEM) and thermogravimetry-differential scanning calorimetry-mass spectrometry (TG-DSC-MS), etc. Results revealed that the addition KOH at its lower ratio (mass ratios of KOH and coke powder in a range of 0.5 and 1) decreased the specific surface area and average lateral sizes, but sharply increased of the specific surface area to 132 m2·g-1 and 355 m2·g-1 and decreased of the space size of aromatic crystallites upon the further increase of the KOH addition amounts (ratios of KOH and coke powder in a range of 3 and 7), generating a number of new micropores and mesopores. The mechanisms study implied surface reactions between KOH and aliphatic hydrocarbon side chain and other carbon functional groups of the coke powder to destruct aromatic crystallites in one dimension and broaden pores at lower KOH addition. In the activation process, KOH was decomposed to be more active components, which can be rapidly destruct the aromatic layers in spatial scope to form developed porous carbon structures within coke powder at higher KOH addition.
Keywords:Activated carbon  Coke powder  Activation  Structure  Potassium hydroxide  
本文献已被 ScienceDirect 等数据库收录!
点击此处可从《中国化学工程学报》浏览原始摘要信息
点击此处可从《中国化学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号