首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
一种改进YOLOv3-Tiny的行车检测算法
作者姓名:
刘力冉
曹杰
杨磊
仇男豪
作者单位:
南京航空航天大学电子信息工程学院,江苏 南京 210016;南京航空航天大学无人机研究院,江苏 南京 210016
摘 要:
YOLO系列算法的简化版本YOLOv3-Tiny具有较为简单的网络框架,对GPU显存要求较低,该算法虽然实时性较高,却存在精度较低的问题,在识别行车目标方面不能得到精确的结果。对此,本文首先改变输入图片的大小,目的是获取图片更多的横向信息,使得网络更容易学习行车的信息,其次改进算法的网络结构提高算法的精度,最终得出改进的YOLOv3-Tiny算法。实验结果表明,改进之后的算法在保证实时性的情况下,提高了精确性。
关 键 词:
深度学习
行车检测
YOLOv3-Tiny
聚类
收稿时间:
2020-03-30
本文献已被
万方数据
等数据库收录!
点击此处可从《计算机与现代化》浏览原始摘要信息
点击此处可从《计算机与现代化》下载全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号