首页 | 本学科首页   官方微博 | 高级检索  
     

基于混合Copula函数的风电机组异常识别方法
引用本文:杨天玥,赵丽军,徐健,厉伟,张国军. 基于混合Copula函数的风电机组异常识别方法[J]. 电气开关, 2021, 59(2): 26-31. DOI: 10.3969/j.issn.1004-289X.2021.02.007
作者姓名:杨天玥  赵丽军  徐健  厉伟  张国军
作者单位:沈阳工业大学电气工程学院,辽宁 沈阳 110870;华能辽宁清洁能源有限责任公司,辽宁 沈阳 110015
基金项目:辽宁省教育厅青年科技人才项目(LQGD2020001)。
摘    要:风电机组的功率曲线是衡量风电机组运行性能的重要指标,其中存在大量异常数据直接影响风电机组运行维护,研究功率曲线异常识别方法对提高风电机组运行稳定性具有重大意义.本文通过对功率曲线的特性分析,分三种工况建立了基于概率分布函数(Copula函数)的功率曲线异常数据识别模型及影响因素Kendall秩相关分析,从而确定了与功率...

关 键 词:风电机组  功率曲线  概率分布函数  Kendall秩相关分析  异常识别

Abnormal Identification Method of Wind Power Turbine Based on Copula Function
YANG Tian-yue,ZHAO Li-jun,XU Jian,LI Wei,ZHANG Guo-jun. Abnormal Identification Method of Wind Power Turbine Based on Copula Function[J]. Electric Switchgear, 2021, 59(2): 26-31. DOI: 10.3969/j.issn.1004-289X.2021.02.007
Authors:YANG Tian-yue  ZHAO Li-jun  XU Jian  LI Wei  ZHANG Guo-jun
Affiliation:(School of Electrical Engineering,Shenyang University of Technology,Shenyang 110870,China;Huaneng Liaoning Clean Energy Co.Ltd.,Shenyang 110015,China)
Abstract:The power curve of a wind turbine is an important index to measure the operation performance of a wind turbine,but there are a lot of abnormal data which directly affect the operation and maintenance of the wind turbine.It is of great significance to study the effective identification method of the abnormal data of the power curve for improving the operation stability of the wind turbine.In this paper,through the analysis of the characteristics of the power curve,the identification model of the abnormal data of the power curve based on the probability distribution function(copula function)and Kendall rank correlation analysis of the influencing factors are established in three working conditions,so as to determine the characteristic parameters highly related to the power curve;The upper and lower boundaries of the power curve are obtained by copula function,and the time series analysis and Euclidean distance calculation of the suspicious points outside the upper and lower boundaries are used to judge whether the doubtful points are abnormal points;the SVM linear regression method is used to establish the prediction model,and the SCADA data of a wind farm is used to verify the proposed method.The results show that under three different conditions,the method can accurately identify the abnormal data of the power curve and accurately locate the fault,which provides a new auxiliary method for the operation and maintenance of the wind turbines.
Keywords:wind turbine  power curve  probability distribution function  Kendall rank correlation analysis  abnormal recognition
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号