首页 | 本学科首页   官方微博 | 高级检索  
     


Flood forecasting using radial basis function neural networks
Authors:Chang   F.-J. Jin-Ming Liang Yen-Chang Chen
Affiliation:Dept. of Bioenvironmental Syst. Eng., Nat. Taiwan Univ., Taipei;
Abstract:
A radial basis function (RBF) neural network (NN) is proposed to develop a rainfall-runoff model for three-hour-ahead flood forecasting. For faster training speed, the RBF NN employs a hybrid two-stage learning scheme. During the first stage, unsupervised learning, fuzzy min-max clustering is introduced to determine the characteristics of the nonlinear RBFs. In the second stage, supervised learning, multivariate linear regression is used to determine the weights between the hidden and output layers. The rainfall-runoff relation can be considered as a linear combination of some nonlinear RBFs. Rainfall and runoff events of the Lanyoung River collected during typhoons are used to train, validate,and test the network. The results show that the RBF NN can be considered a suitable technique for predicting flood flow
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号