首页 | 本学科首页   官方微博 | 高级检索  
     

切比雪夫函数型连接神经网络在信道均衡中的应用
引用本文:胡志恒,王炎滨,虞厥邦. 切比雪夫函数型连接神经网络在信道均衡中的应用[J]. 信号处理, 2003, 19(4): 287-290
作者姓名:胡志恒  王炎滨  虞厥邦
作者单位:电子科技大学电子工程学院,成都,610054
摘    要:本文提出一种基于切比雪夫函数型连接神经网络(CFLNN)的信道均衡方法。传统的前馈神经网络虽然能有效地解决信道均衡的问题,但具有计算复杂度过高,收敛速度慢等缺点。函数型连接神经网络通过对输入模式进行非线性扩展,可以不必使用隐层而不降低整体性能,从而极大简化了网络结构。同时,神经网络的学习方法得以简化,提高了收敛速度。本文采用可变尺度共扼梯度下降法(SCG)对该函数型连接网络进行训练。仿真结果表明了用切比雪夫函数型连接神经网络解决信道均衡问题的有效性。

关 键 词:切比雪夫多项式  :函数型连接神经网络  信道均衡
修稿时间:2002-08-23

The Application of Chebyshev Functional Link Neural Networks in Channel Equalization
Hu Zhiheng Wang Yanbin Yu Juebang. The Application of Chebyshev Functional Link Neural Networks in Channel Equalization[J]. Signal Processing(China), 2003, 19(4): 287-290
Authors:Hu Zhiheng Wang Yanbin Yu Juebang
Abstract:A computationally efficient neural network named as chebyshev functional link neural network (CFLNN) for the purpose of channel equalization is proposed in this paper. A channel equalizer can be effectively implemented by using feed forward neural networks, but this also brings the drawback of high computational complexity and slow convergence rate. A functional link neural network can expand its input pattern to eliminate the need of hidden layer without sacrificing its performance. Thus the complexity of network and the learning algorithm can be simplified remarkably with a faster convergence rate. This CFLNN equalizer is trained by a scaled conjugate gradient (SCG) algorithm. The simulation results, indicate that CFLNN is an efficient method to the channel equalization problem.
Keywords:chebyshev polynomials  funclional link neural network  channel equalization
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号