首页 | 本学科首页   官方微博 | 高级检索  
     


Kinetics of ethanol steam reforming over Ni/Olivine catalyst
Affiliation:Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
Abstract:Olivine, a natural mineral consisting of different metal oxides (mainly Mg, Si and Fe oxides) was used as a support for nickel catalyst used in steam reforming of ethanol. Catalyst containing different wt% of Ni on olivine were prepared by conventional wet-impregnation method and characterized by BET, XRD, SEM (coupled with EDS) and H2-TPR. The reaction was carried out in a tubular fixed bed reactor. Among all the catalysts, 5% Ni on olivine catalyst gave highest hydrogen yield as well as ethanol conversion through ethanol steam reforming reaction. The catalyst activity was analyzed by varying three important process parameters (temperature, ethanol to water molar ratio and space-time). The reaction was performed in the temperature range of 450 °C to 550 °C with 1:6 to 1:12 M feed ratio of ethanol to water at a space-time range 7.21–15.87 kg cat h/kmol ethanol. A maximum yield of 4.62 mol of hydrogen per mole of ethanol reacted was obtained at 550 °C with ethanol to steam molar ratio of 1:10 and space-time of 7.94 kg cat h/kmol ethanol with the ethanol conversion level of 97%. CHNS analysis of the spent catalyst was performed to find the coke deposited over the catalyst surface during the reaction. The power law and LHHW type kinetic models were developed. The power law model predicts the activation energy as 29.07 kJ/mol, whereas the LHHW type model gives the activation energy as 27.4 kJ/mol.
Keywords:Hydrogen  Ethanol  Steam reforming  Olivine  Nickel  Kinetic study
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号