首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical study on the behavior and design of a novel multistage hydrogen pressure-reducing valve
Affiliation:1. School of Mechanical Engineering, Shijiazhuang Tiedao University, China;2. College of Chemical Engineering, Fuzhou University, China
Abstract:Applying hydrogen fuel-cell vehicles (HFCVs) is feasible to achieve net zero carbon emission in transportation sector. The energy density requirements of these vehicles are fulfilled via high-pressure gaseous hydrogen storage; therefore, an effective pressure-reducing system is necessary. In this work, a novel multistage pressure-reducing valve (named as T–M valve) combining a sleeve pressure structure valve and a Tesla-type orifice valve is proposed. A computational fluid dynamics (CFD) model is developed to analyze the influence of operating parameters on pressure and velocity distributions. Results show that the large pressure and velocity gradients’ region is concentrated on the throttling elements. The valve opening and pressure ratio significantly affect energy consumption. In addition, the Mach number in the valve less than one is proposed. This study is conducive to further energy conservation and emission reduction and the research of multistage flow pressure-reducing devices.
Keywords:Computational fluid dynamics (CFD)  Hydrogen fuel-cell vehicles (HFCVs)  Multistage pressure-reducing valve  Pressure ratio
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号