首页 | 本学科首页   官方微博 | 高级检索  
     


Life cycle assessment of a renewable energy system with hydrogen-battery storage for a remote off-grid community
Affiliation:1. Department of Energy (DENERG), Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, Italy;2. Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, Italy
Abstract:Remote areas usually do not have access to electricity from the national grid. The energy demand is often covered by diesel generators, resulting in high operating costs and significant environmental impacts. With reference to the case study of Ginostra (a village on a small island in the south of Italy), this paper analyses the environmental sustainability of an innovative solution based on Renewable Energy Sources (RES) integrated with a hybrid hydrogen-battery energy storage system. A comparative Life Cycle Assessment (LCA) has been carried out to evaluate if and to what extent the RES-based system could bring environmental improvements compared to the current diesel-based configuration. The results show that the impact of the RES-based system is less than 10% of that of the current diesel-based solution for almost all impact categories (climate change, ozone depletion, photochemical ozone formation, acidification, marine and terrestrial eutrophication and fossil resource use). The renewable solution has slightly higher values only for the following indicators: use of mineral and metal resources, water use and freshwater eutrophication. The climate change category accounts for 0.197 kg CO2 eq./kWh in the renewable scenario and 1.73 kg CO2 eq./kWh in the diesel-based scenario, which corresponds to a reduction in GHG emissions of 89%. By shifting to the RES-based solution, about 6570 t of CO2 equivalent can be saved in 25 years (lifetime of the plant). In conclusion, the hydrogen-battery system could provide a sustainable and reliable alternative for power supply in remote areas.
Keywords:LCA  Remote areas  Off-grids communities  Sustainable electricity  Impact assessment
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号