基于新型三元卷积神经网络的行人再辨识算法 |
| |
引用本文: | 朱建清, 曾焕强, 杜永兆, 雷震, 郑力新, 蔡灿辉. 基于新型三元卷积神经网络的行人再辨识算法[J]. 电子与信息学报, 2018, 40(4): 1012-1016. doi: 10.11999/JEIT170803 |
| |
作者姓名: | 朱建清 曾焕强 杜永兆 雷震 郑力新 蔡灿辉 |
| |
作者单位: | 1.(华侨大学工学院 泉州 362021);;2.(华侨大学信息科学与工程学院 厦门 361021) |
| |
基金项目: | 国家自然科学基金(61602191, 61401167, 61473291, 61605048, 61372107),福建省自然科学基金(2016J01308),厦门市科技计划项目(3502Z20173045),华侨大学中青年教师科技创新资助计划(ZQN-PY418, ZQN-YX403, ZQN-PY518),华侨大学科研基金资助项目(16BS108) |
| |
摘 要: | 基于三元卷积神经网络的行人再辨识算法多数采用欧式距离度量行人之间的相似度,并配合铰链(hinge)损失函数进行卷积神经网络的训练。然而,这种作法存在两个不足:欧式距离作为行人相似度,鉴别力不够强;铰链损失函数的间隔(Margin)参数设定依赖于人工预先设定且在训练过程中无法自适应调整。为此,针对上述两个不足进行改进,该文提出一种基于新型三元卷积神经网络的行人再辨识算法,以提高行人再辨识的准确率。首先,提出一种归一化混合度量函数取代传统的度量方法进行行人相似度计算,提高了行人相似度度量的鉴别力;其次,提出采用Log-logistic函数代替铰链函数,无需人工设定间隔参数,改进了特征与度量函数的联合优化效果。实验结果表明,所提出的算法在Auto Detected CUHK03 和VIPeR两个数据库上的准确率均获得显著的提升,验证了所提出算法的优越性。
|
关 键 词: | 行人再辨识 深度学习 三元卷积神经网络 |
收稿时间: | 2017-08-08 |
修稿时间: | 2018-01-10 |
|
| 点击此处可从《电子与信息学报》浏览原始摘要信息 |
|
点击此处可从《电子与信息学报》下载免费的PDF全文 |
|