Abstract: | ![]() Rabbits with chronically implanted electrodes in olfactory bulb and cortex were classically conditioned to give an increase in relative frequency of sniffing to odor stimuli (CS+) reinforced with mild electric shock. Electroencephalographic high-frequency (35–85 Hz) bursts were recorded from an ensemble of nine bulbar depth electrodes and a second ensemble of 50 cortical surface electrodes. The olfactory cortex responded to the CS+ with sustained elevation of burst amplitude even though the olfactory bulb, from which it receives its primary centripetal input, underwent a marked decline in burst amplitude during the same time period. The amplitude reduction was not spatially uniform: The burst of the bulbar region that declined most in amplitude had the greatest phase lag with respect to the bulbar ensemble average burst. These effects were learning related because they did not occur for CS+ trials at the beginning of conditioning or for unreinforced control trials at any time. (PsycINFO Database Record (c) 2010 APA, all rights reserved) |