Evaluation of the three-dimensional elastic Green's function in anisotropic cubic media |
| |
Authors: | Ven-Gen Lee |
| |
Affiliation: | Department of Civil Engineering, National Chi-Nan University, Puli, Nantou 545, Taiwan, ROC |
| |
Abstract: | By using the Fourier transforms method, the three-dimensional Green's function solution for a unit force applied in an infinite cubic material is evaluated in this paper. Although the elastic behavior of a cubic material can be characterized by only three elastic constants, the explicit solutions of Green's function for a cubic material are not available in the literatures. The central problem for explicitly solving the elastic Green's function of anisotropic materials depends upon the roots of a sextic algebraic equation, which results from the inverse Fourier transforms and is composed of the material constants and position vector parameters. The close form expression of Green's function is presented here in terms of roots of the sextic equation. The sextic equation for an anisotropic cubic material is discussed thoroughly and specific results are given for possible explicit solutions. |
| |
Keywords: | Green's function Anisotropic materials Stroh eigenvalues Fourier transform method Cubic material Sextic algebraic equation |
本文献已被 ScienceDirect 等数据库收录! |
|