首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis and characterization of partially biodegradable and thermosensitive hydrogel
Authors:Xian-Zheng Zhang  Guo-Ming Sun  Da-Qing Wu  Chih-Chang Chu
Affiliation:Department of Textiles and Apparel and Biomedical Engineering Program, Cornell University, Ithaca, New York 14853-4401, USA.
Abstract:A partially biodegradable and thermosensitive hybrid hydrogel network (DAN series) based on dextran-allylisocyanate (Dex-AI) and poly(N-isopropylacrylamide) (PNIPAAm) was synthesized via UV photocrosslinking. These hybrid hydrogels were characterized in terms of their chemical structure, thermal, mechanical, morphological and temperature-induced swelling properties. The effect of the composition ratio of Dex-AI to PNIPAAm on such properties were examined. The differential scanning calorimetry data show that this Dex-AI/PNIPAAm hybrid network has an increased lower critical solution temperature (LCST) and glass transition temperature (Tg) with an increase in the Dex-AI content. The interior morphology of these hybrid hydrogels revealed a decreased porous microstructure with an increase in the Dex-AI content in the hybrid network. Furthermore, if the Dex-AI composition became too high, a distinctive network structure with two different microporous structures appeared. The mechanical properties of these hybrid hydrogels also increased with an increase in the Dex-AI content. The temperature dependence of the swelling ratio, the deswelling kinetics as well as the reswelling kinetics was also characterized by gravimetric method. When comparing with a normal PNIPAAm hydrogel, these Dex-AI/PNIPAAm hybrid networks, due to the presence of Dex-AI moiety, also show improved temperature-induced intelligent properties, such as the faster and controllable response dynamics, which may find promising applications in a wide variety of fields, such as biomedical and bioengineering fields.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号