首页 | 本学科首页   官方微博 | 高级检索  
     

高效深度特征提取及其在显著性检测中的应用
引用本文:方正, 曹铁勇, 郑云飞, 杨吉斌. 高效深度特征提取及其在显著性检测中的应用[J]. 计算机辅助设计与图形学学报, 2019, 31(2): 324-331. DOI: 10.3724/SP.J.1089.2019.17166
作者姓名:方正  曹铁勇  郑云飞  杨吉斌
作者单位:中国人民解放军陆军工程大学指挥控制工程学院;中国人民解放军陆军炮兵防空兵学院图像检测技术重点实验室
基金项目:国家自然科学基金(61471394);江苏省优秀青年基金(BK20180080)
摘    要:针对卷积神经网络(CNN)中间层特征维度高,含噪声较多的问题,提出一种CNN特征降维的方法,首先利用主成分分析(PCA)对CNN特征进行降维,在数据层面和人类感知层面证明了其有效性;然后将降维后的CNN特征作为区域特征向量,利用多水平超像素分割和随机森林回归构建了一个融合手工特征及降维CNN特征的显著性检测模型;最后选取了10个显著性检测传统模型进行对比,构建的融合模型性能优于仅使用传统手工特征的方法,降维后的CNN特征能够改进显著性模型的性能.

关 键 词:显著性检测  卷积神经网络特征  主成分分析  特征融合  随机森林
收稿时间:2018-03-12
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《计算机辅助设计与图形学学报》浏览原始摘要信息
点击此处可从《计算机辅助设计与图形学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号