首页 | 本学科首页   官方微博 | 高级检索  
     

基于提升小波变换与学习矢量量化网络的鉴别分析方法
引用本文:陈蕾,黄贤武,刘家胜,仲兴荣. 基于提升小波变换与学习矢量量化网络的鉴别分析方法[J]. 计算机应用, 2006, 26(9): 2038-2040
作者姓名:陈蕾  黄贤武  刘家胜  仲兴荣
作者单位:苏州大学,电子信息学院,江苏,苏州,215021;苏州大学,电子信息学院,江苏,苏州,215021;苏州大学,电子信息学院,江苏,苏州,215021;苏州大学,电子信息学院,江苏,苏州,215021
摘    要:提出了一种基于提升小波变换(LWT)和学习矢量量化网络(LVQ)相结合的鉴别分析方法。提升小波又叫作第二代小波,比传统的第一代小波变换更为快速有效,利用它的多分辨率特性,可以获取输入图像的低频信息并使图像降维。LVQ算法是在有教师状态下对竞争层进行训练的一种学习算法。LVQ网络结构简单,但却表现出比BP网络更强的有效性和鲁棒性。在ORL标准人脸库及现实人脸图像上的实验结果表明该方法具有很好的鉴别分析能力。

关 键 词:提升小波变换  学习矢量量化  鉴别分析  神经网络  人脸识别
文章编号:1001-9081(2006)09-2038-3
收稿时间:2006-03-10
修稿时间:2006-03-102006-06-07

Discriminant analysis based on lifting wavelet transform and learning vector quantization
CHEN Lei,HUANG Xian-wu,LIU Jia-sheng,ZHONG Xing-rong. Discriminant analysis based on lifting wavelet transform and learning vector quantization[J]. Journal of Computer Applications, 2006, 26(9): 2038-2040
Authors:CHEN Lei  HUANG Xian-wu  LIU Jia-sheng  ZHONG Xing-rong
Affiliation:School of Electronics and Information Engineering, Soochow University, Suzhou Jiangsu 215021, China
Abstract:A new discriminant analysis method based on LWT(Lifting Wavelet Transform) and LVQ(Learning Vector Quantization) Network was proposed in this paper.LWT is faster and more efficient than the first generation wavelet transform,but it also has the multi-resolution characteristics.LWT can be used to extract the low frequency coefficients and reduce the dimension of an image.LVQ is an effective learning algorithm that trains the competitive layer under supervision.It has a simple network structure,but it also has good discriminant analysis ability.The experimental results on ORL face database show that the method proposed has very good classification capability and high recognition rate.
Keywords:LWT(Lifting Wavelet Transform)  LVQ(Learning Vector Quantization)  discriminant analysis  neural network  face recognition  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号