首页 | 本学科首页   官方微博 | 高级检索  
     


Highly conductive epoxy/graphite composites for bipolar plates in proton exchange membrane fuel cells
Authors:Ling Du  Sadhan C. Jana
Affiliation:Department of Polymer Engineering, University of Akron, 250 South Forge Street, Akron, OH 44325-0301, USA
Abstract:Carbon-filled epoxy composites are developed for potential application as bipolar plates in proton exchange membrane (PEM) fuel cells. These composites are prepared by solution intercalation mixing, followed by compression molding and curing. Electrical conductivity, thermal and mechanical properties, and hygrothermal characteristics are determined as function of carbon-filler content. Expanded graphite and carbon black are used as synergistic combination to obtain desired in-plane and through-plane conductivities. These composites show high glass transition temperatures (Tg ∼ 180 °C), high thermal degradation temperatures (T2 ∼ 415 °C), in-plane conductivity of 200–500 S cm−1 with 50 wt% carbon fillers, in addition to offering high values of flexural modulus, flexural strength, and impact strength, respectively 2 × 104 MPa, 72 MPa, and 173 J m−1. The presence of carbon fillers helps reduce water uptake from 4 to 5 wt% for unfilled epoxy resins to 1–2 wt%. In addition, morphology, electrical, mechanical, and thermal properties remain unchanged on exposure to boiling water and acid reflux. This data indicate that the composites developed in this work meet many attributes of bipolar plates for use in PEM fuel cells.
Keywords:Bipolar plates   Graphite-epoxy composite   Electrical conductivity   Hygrothermal effects
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号