首页 | 本学科首页   官方微博 | 高级检索  
     

冷却强度对超高硫中碳钢方坯凝固过程MnS生长的影响
引用本文:吕迺冰,高航,刘珂,刘斌,徐士新,周洁.冷却强度对超高硫中碳钢方坯凝固过程MnS生长的影响[J].钢铁,2022,57(6):50-56.
作者姓名:吕迺冰  高航  刘珂  刘斌  徐士新  周洁
作者单位:1.首钢集团有限公司技术研究院, 北京 100043;
2.绿色可循环钢铁流程北京市重点实验室, 北京 100043;
3.首钢贵阳特殊钢有限责任公司营销部, 贵州 贵阳 550005;
4.北京市能源用钢工程技术研究中心, 北京 100043
基金项目:国家新材料生产应用示范平台建设项目——农机装备材料生产应用示范平台资助项目(TC200H01X-5)
摘    要: 中碳超高硫易切削钢SAE144是兼具力学性能与切削性能的结构钢,用于制造汽车发动机密封阀件等,产品多采用转炉/电炉→LF精炼→连铸小方坯→线棒材热轧→冷拉及机加工成型流程生产,近年来市场热度稳步提升。若钢中MnS尺寸过大,零件加工使用过程易发生探伤不合、切削性能差、带状组织严重、力学性能各相异性显著,甚至拉拔加工断裂等问题。MnS夹杂物多在铸坯凝固后期形成,随着轧制与钢基体同步变形,控制该类钢种铸坯内MnS原始尺寸成为控制热轧材中MnS夹杂物形态及尺寸的最关键环节。为控制热轧超高硫中碳钢盘条中MnS夹杂物,利用钢坯凝固数值模拟、第二相析出理论、Ostwald熟化理论计算分析了160 mm2钢坯中硫元素偏析及MnS的生成、长大和熟化过程。计算结果表明,当固相分数fs为0.446、硫微观偏析比达到2.19时,铸坯在凝固末期生成MnS。凝固过程中MnS的生长过程决定了钢坯中MnS颗粒的直径。理论计算表明,当连铸二次冷却水量固定为0.6L/kg时,拉速为1.6、2.1和2.6 m/min时,160 mm2方坯中心的MnS分别增长到30.6、32.2和34.6 μm,与实际测试结果一致。控制该类钢种线材中MnS尺寸的关键是提高二冷区的冷却强度,降低连铸拉速。基于该系列计算方法,提出了160 mm2钢坯中与MnS直径控制目标相匹配的连铸工艺参数控制范围。

关 键 词:MnS长大  超高硫  中碳易切削钢  小方坯连铸  拉速  
收稿时间:2021-11-11

Effects of cooling intensity on MnS growth during solidification in ultra-high sulfur medium carbon steel billet
LÜ,Nai-bing,GAO Hang,LIU Ke,LIU Bin,XU Shi-xin,ZHOU Jie.Effects of cooling intensity on MnS growth during solidification in ultra-high sulfur medium carbon steel billet[J].Iron & Steel,2022,57(6):50-56.
Authors:  Nai-bing  GAO Hang  LIU Ke  LIU Bin  XU Shi-xin  ZHOU Jie
Affiliation:1. Research Institute of Technology, Shougang Group Co., Ltd., Beijing 100043, China; 2. Beijing Key Laboratory of Green Recyclable Process for Iron and Steel Production Technology, Beijing 100043, China; 3. Marketing Department, Guiyang Special Steel Co., Ltd., Shougang Group, Guiyang 550005, Guizhou, China; 4. Beijing Engineering Research Center of Energy Steel, Beijing 100043, China
Abstract:Medium-carbon ultra-high sulfur free-cutting steel SAE144 is a structural steel with both mechanical properties and machinability,thus used as automotive engine sealing valves, etc. The production process is mostly converter/electric furnace→LF refining→continuous casting→wire rod hot rolling→cold drawing and machining,the market popularity has steadily increased in recent years. If the MnS inclusions in the steel are not properly controlled, problems such as failure in flaw detection, poor machinability, severe band structure, significant dissimilarity in mechanical properties, and even drawing fractures are likely to occur. MnS inclusions are mostly formed in the late stage of billet solidification and are deformed synchronously with the steel matrix during rolling. Controlling the original size of MnS in the billet has become the most critical step to control the morphology and size of MnS inclusions in hot-rolled products.In order to control MnS inclusions in hot-rolled ultra-high sulfur medium-carbon steel wire rod, the segregation of S element and generation, growth and ripening of MnS was analyzed by the billet solidification numerical simulation calculation, second phase precipitation theory and Ostwald ripening theory in 160 mm2 billet. The calculation results show that MnS is generated at the end of the solidification in cast billet when solid phase fraction fs=0.446 with the segregation ratio of S reaches 2.19. The growth process of MnS during solidification determines the diameter of MnS particles in the billet. The theoretical calculation shows that when the secondary cooling water volume is fixed to 0.6 L/kg, the MnS in the 160 mm2 billet center grows up to 30.6, 32.2 and 34.6 μm at the casting speed of 1.6, 2.1 and 2.6 m/min respectively, which is consistent with the actual test results. The key to controll the size of MnS in wire rod is to increase the cooling intensity of the secondary cooling zone and reduce the casting speed of the billet. Based on the calculation method in this paper, control range of continuous casting process parameters matching the MnS diameter in 160 mm2 billet is presented.
Keywords:MnS growth  super high S content  medium carbon free-cutting steel  billet continuous casting  casting speed  
点击此处可从《钢铁》浏览原始摘要信息
点击此处可从《钢铁》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号