首页 | 本学科首页   官方微博 | 高级检索  
     


Enhanced efficiency and stability of polymer solar cells with TiO2 nanoparticles buffer layer
Affiliation:1. Atmospheric Sciences Research Center, State University of New York, United States;2. Key Laboratory of the Atmospheric Composition and Optical Radiation, CAS, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, China;3. Science Directorate, NASA Langley Research Center, United States;4. NOAA Center for Atmospheric Sciences, Howard University, United States;5. College of Atmospheric Sciences, Nanjing University, China
Abstract:TiO2 sols synthesized with a facile solution-based method were used as a buffer layer between the active layer and the cathode Al in conventional structure polymer solar cells (PSCs). Using transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD) and atomic force microscopy (AFM), the morphological and crystallographic properties of synthesized TiO2 nanoparticles (TiO2 NPs) as well as the buffer layer were studied in detail. It was observed that by increasing H2O in the process of peptization both the crystallinity and particle size of TiO2 NPs were enhanced, while the particles in sol showed a narrower size distribution conformed by dynamic light scattering. Inserting TiO2 NPs as a buffer layer in conventional structure PSCs, both the power conversion efficiency (PCE) and stability were improved dramatically. PSCs based on the structure of ITO/PEDOT:PSS/P3HT:PCBM/TiO2 NPs/Al showed the short-circuit current (Jsc) of 12.83 mA/cm2 and the PCE of 4.24%, which were improved by 31% and 37%, respectively comparing with the reference devices without a TiO2 buffer layer. The stability measurement showed that PSC devices with a TiO2 NPs buffer layer could retain 80% of the original PCEs after exposed in air for 200 h, much better than the devices without such a buffer layer. The effect can be attributed to the protection by the buffer layer against oxygen and H2O diffusion into the active layers. The observations indicate that TiO2 NPs synthesized by facile solution-based method have great potential applications in PSCs, especially for large-area printed PSCs.
Keywords:Buffer layer  Polymer solar cells  Stability
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号