首页 | 本学科首页   官方微博 | 高级检索  
     


R curves for energy dissipative materials
Authors:P Will
Affiliation:(1) Department of Electrical Engineering, College for Technology and Economics, Technikumplatz 17, D 09648 Mittweida, Germany
Abstract:This paper focuses on the theoretical simulation of fracture and stable crack growth of specimens with non-local damage. The first law of thermodynamics allows the identification or definition of appropriate crack-driving forces. The results are compared with recent ideas on defining tearing resistance for uncontained yield through the energy dissipation rate. A hypothesis regarding the conversion of mechanical into thermal energies within the non-local damage region is formulated to model the fracture behaviour of energy dissipative materials with rising crack resistance characteristics. The material's capacity to develop non-local damage is assumed to decrease with the actual damage level. This decrease relates linearly with the remaining resources of the material in dissipating energy. The hypothesis, which proposes a square root function for theoretical J-R curves, is verified by the regression analysis of experimental data regarding a European round-robin test of different steels.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号