首页 | 本学科首页   官方微博 | 高级检索  
     

一种密集卷积神经网络的电视语音响度补偿方法
引用本文:谢仁礼,秦宇,罗雪倩. 一种密集卷积神经网络的电视语音响度补偿方法[J]. 电声技术, 2021, 45(6): 18-24. DOI: 10.16311/j.audioe.2021.06.005
作者姓名:谢仁礼  秦宇  罗雪倩
作者单位:深圳TCL新技术有限公司,广东 深圳 518071
摘    要:现有的电视语音响度补偿是针对人耳听阈和听力障碍的损失进行均衡补偿,这类方法会放大同频段的非人声.针对这类方法的缺陷,提出利用深度学习语音增强技术将人声从电视节目音频中分离出来,使用户直接听到清晰人声.对此提出密集连接卷积网络(Densely Connected Convolutional Network,DenseNe...

关 键 词:密集连接卷积神经网络  卷积编解码器  实时语音增强  残差连接

A Densely Connected Convolutional Networks for Speech Loudness Compensation of TV Program
XIE Renli,QIN Yu,LUO Xueqian. A Densely Connected Convolutional Networks for Speech Loudness Compensation of TV Program[J]. Audio Engineering, 2021, 45(6): 18-24. DOI: 10.16311/j.audioe.2021.06.005
Authors:XIE Renli  QIN Yu  LUO Xueqian
Abstract:
Keywords:
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号