首页 | 本学科首页   官方微博 | 高级检索  
     

载体孔结构对加氢脱硫催化剂催化性能的影响
引用本文:郭蓉,沈本贤,方向晨,凌昊.载体孔结构对加氢脱硫催化剂催化性能的影响[J].石油学报(石油加工),2012,28(5):724-729.
作者姓名:郭蓉  沈本贤  方向晨  凌昊
作者单位:1. 华东理工大学 化学工程联合国家重点实验室,上海 200237; 2. 中国石化 抚顺石油化工研究院, 辽宁 抚顺 113001
摘    要: 针对4,6-二甲基二苯并噻吩(4,6-DMDBT)等有位阻效应的大分子硫化物的加氢脱除,以获得合适孔结构分布的氧化铝载体为目标,通过调整拟薄水铝石制备的老化pH值和时间,并在成型过程中选择对载体孔结构破坏性小的弱酸作为胶溶剂,制得孔体积大、比表面积高、孔径适中的新型氧化铝载体。采用NH3-TPD和吡啶-TPD表征新型载体的酸分布与常规氧化铝载体的差异。以该载体制备Mo-Co加氢脱硫催化剂,并采用X射线光电子能谱和透射电子显微镜表征其表面的成分、价态及能级结构。结果表明,以分子直径小的NH3为吸附剂时,酸量无明显差异,但以分子直径较大的吡啶作为吸附剂时,新型氧化铝载体的酸量比常规氧化铝载体显著提高,显示出有利于大分子吸附的优势;新型氧化铝载体可以减弱活性金属与载体间的相互作用,生成更多的加氢脱硫活性中心。以新型氧化铝载体制备的催化剂具有良好的加氢脱硫、加氢脱氮及芳烃饱和活性,更有利于4,6-DMDBT的脱除。

关 键 词:氧化铝  载体  孔结构  加氢脱硫(HDS)  催化活性

Effect of Support Pore Structure on Hydrodesulfurization Performance of Catalyst
GUO Rong,SHEN Benxian,FANG Xiangchen,LING Hao.Effect of Support Pore Structure on Hydrodesulfurization Performance of Catalyst[J].Acta Petrolei Sinica (Petroleum Processing Section),2012,28(5):724-729.
Authors:GUO Rong  SHEN Benxian  FANG Xiangchen  LING Hao
Affiliation:1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; 2. Fushun Research Institute of Petroleum and Petrochemicals, SINOPEC, Fushun 113001, China  
Abstract:Aiming at the deep hydrodesulfurization (HDS) of the compounds with strong steric hindrance effect such as 4,6-DMDBT, a new type of alumina support was developed.Various preparation conditions were used to improve the pore structure of the support, including adjusting aging time and pH value during pseudoboehmite synthesis, and with a weak acid as peptizing agent during extruding.The new support possessed larger pore volume, larger specific surface area, suitable pore diameter and higher efficient pore channel ratio, compared to conventional support, which will benefit the adsorption of refractory compounds on the surface of catalysts NH3-TPD and pyridine-TPD were used to characterize the acidity distribution of supports X-ray photoelectron spectroscopy (XPS) and transmission electron microscope (TEM) were used to analyze the surface composition, the valence and energy level structure of the catalysts prepared with the new support NH3-TPD results showed that no obvious acidity difference was detected between the new support and the conventional support, while pyridine-TPD results indicated that the acidity of the new support was stronger than that of the conventional one, meaning that the new support favored the adsorption of large molecules. More hydrodesulfurization active sites were produced through reducing the interaction between active metals and the support. Catalyst prepared with the new support had fair activities of HDS, HDN and aromatic saturation, especially high activity in the removal of 4,6-DMDBT.
Keywords:alumina  support  pore structure  hydrodesulfurization(HDS  catalytic activity
点击此处可从《石油学报(石油加工)》浏览原始摘要信息
点击此处可从《石油学报(石油加工)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号