首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络的改进算法研究
引用本文:何正风. 基于BP神经网络的改进算法研究[J]. 现代计算机, 2014, 0(5): 51-53
作者姓名:何正风
作者单位:佛山科学技术学院理学院,佛山528000
基金项目:广东省自然科学基金(No.S2011020002719)
摘    要:BP算法使用优化算法中的梯度下降法,梯度下降法的不足,使BP算法收敛速度慢,计算量比较大,且收敛速度与初始权的选择有关;学习时,无法保证可以得到最小值。BP的改进算法提出权值更新的快速收敛方法,使用MatLab对改进算法进行仿真,结果表明改进算法具有高效性和有效性。

关 键 词:BP算法  学习算法  权值调整

Research on the Improved Algorithm Based on BP Neural Network
HE Zheng-feng. Research on the Improved Algorithm Based on BP Neural Network[J]. Modem Computer, 2014, 0(5): 51-53
Authors:HE Zheng-feng
Affiliation:HE Zheng-feng (School of Science, Foshan University, Foshan 528000)
Abstract:The BP neural algorithm exploits the decreasing gradient algorithm, the one depriving from the optimized algorithm, that causes a low con- vergence rate and an intensive computation to the BP neural algorithm. It is proved that the convergence rate is related to the choice of the initial right and that, when learned, the minimum cannot be guaranteed. In light of the updated BP algorithm, puts forward a method for rapid convergence rate and tries a simulation of the updated algorithm through MatLab. The results show that the improved algorithm is both highly efficient and effective.
Keywords:BP Algorithm  Learning Algorithm  Weight Adjustment
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号