首页 | 本学科首页   官方微博 | 高级检索  
     


Studying the ability of Fusarium oxysporum and recombinant Saccharomyces cerevisiae to efficiently cooperate in decomposition and ethanolic fermentation of wheat straw
Authors:Gianni Panagiotou  Evangelos Topakas  Maria MoukouliPaul Christakopoulos  Lisbeth Olsson
Affiliation:a Center for Microbial Biotechnology, Department of Systems Biology, Building 227, Technical University of Denmark, 2800 Lyngby, Denmark
b BIOtechMASS Unit, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, Athens 15780, Greece
c Department of Chemical and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
Abstract:Fusarium oxysporum F3 alone or in mixed culture with Saccharomyces cerevisiae F12 were used to ferment carbohydrates of wet exploded pre-treated wheat straw (PWS) directly to ethanol. Both microorganisms were first grown aerobically to produce cell mass and thereafter fermented PWS to ethanol under anaerobic conditions. During fermentation, soluble and insoluble carbohydrates were hydrolysed by the lignocellulolytic system of F. oxysporum. Mixed substrate fermentation using PWS and corn cobs (CC) in the ratio 1:2 was used to obtain an enzyme mixture with high cellulolytic and hemicellulolytic activities. Under these conditions, activities as high as 34300, 9100, 326, 24, 169, 27 and 254 U dm−3 of xylanase, endoglucanase, ??-glucosidase, arabinofuranosidase, avicelase, feruloyl esterase and acetyl esterase, respectively, were obtained. The replacement of the enzyme production phase of F. oxysporum by the addition of commercially available enzymes Celluclast® 1.5 L FG and Novozym® 188 in 3:1 ratio for the treatment of PWS, resulted in a 3-fold increase in the volumetric ethanol productivity without increasing the ethanol production significantly. By direct bioconversion of 110 kg m−3 dry matter of PWS, ethanol concentration (4.9 kg m−3) and yield (40 g kg−1 of PWS) were similarly obtained by F. oxysporum and the mixed culture, while productivity rates as high as 34 g m−3 h−1 and 108 g m−3 h−1 were obtained by F. oxysporum and the mixed culture, respectively.
Keywords:Fusarium oxysporum   Saccharomyces cerevisiae   Consolidated bioprocessing   Wheat straw   Ethanol
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号