Separation of bovine serum albumin (BSA) using γ‐Al2O3–clay composite ultrafiltration membrane |
| |
Authors: | P. Monash Abhijit Majhi Dr G. Pugazhenthi |
| |
Affiliation: | Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India |
| |
Abstract: | BACKGROUND: Ceramic membranes have received more attention than polymeric membranes for the separation and purification of bio‐products owing to their superior chemical, mechanical and thermal properties. Commercially available ceramic membranes are too expensive. This could be overcome by fabricating membranes using low‐cost raw materials. The aim of this work is to fabricate a low‐cost γ‐Al2O3–clay composite membrane and evaluate its potential for the separation of bovine serum albumin (BSA) as a function of pH, feed concentration and applied pressure. To achieve this, the membrane support is prepared using low‐cost clay mixtures instead of very expensive alumina, zirconia and titania materials. The cost of the membrane can be further reduced by preparing a γ‐alumina surface layer on the clay support using boehmite sol synthesized from inexpensive aluminium chloride instead of expensive aluminium alkoxide using a dip‐coating technique. RESULTS: The pore size distribution of the γ‐Al2O3‐clay composite membrane varied from 5.4–13.6 nm. The membrane was prepared using stable boehmite sol of narrow particle size distribution and mean particle size 30.9 nm. Scanning electron microscopy confirmed that the surface of the γ‐Al2O3–clay composite membrane is defect‐free. The pure water permeability of the support and the composite membrane were found to be 4.838 × 10?6 and 2.357 × 10?7 m3 m?2 s?1 kPa?1, respectively. The maximum rejection of BSA protein was found to be 95%. It was observed that the separation performance of the membrane in terms of flux and rejection strongly depends on the electrostatic interaction between the protein and charged membrane. CONCLUSION: The successively prepared γ‐Al2O3‐clay composite membrane proved to possess good potential for the separation of BSA with high yield and could be employed as a low cost alternate to expensive ceramic membranes. Copyright © 2009 Society of Chemical Industry |
| |
Keywords: | membrane clay γ ‐Al2O3 BSA |
|
|