首页 | 本学科首页   官方微博 | 高级检索  
     

软件可靠性预测的ARIMA方法研究
引用本文:贾治宇,康锐. 软件可靠性预测的ARIMA方法研究[J]. 计算机工程与应用, 2008, 44(35): 17-19. DOI: 10.3778/j.issn.1002-8331.2008.35.005
作者姓名:贾治宇  康锐
作者单位:北京航空航天大学,工程系统工程系,北京,100191;北京航空航天大学,工程系统工程系,北京,100191
基金项目:国家高技术研究发展计划(863计划)  
摘    要:
对基于求和自回归滑动平均模型(ARIMA模型)的软件可靠性预测方法进行了研究,提出了将软件可靠性失效数据看作时间序列,通过建立相应的ARIMA(pdq)模型来进行预测的方法。对该方法的基本思想、模型表述、建模流程进行了详细介绍,并依据上述方法选用Musa经典数据集中的Project SS2中的数据进行了预测,结果表明预测的准确性较高,说明该方法适用于软件可靠性预测。

关 键 词:软件可靠性  预测  求和自回归滑动平均模型
收稿时间:2008-06-27
修稿时间:2008-9-25 

Forecasting method of software reliability based on ARIMA model
JIA Zhi-yu,KANG Rui. Forecasting method of software reliability based on ARIMA model[J]. Computer Engineering and Applications, 2008, 44(35): 17-19. DOI: 10.3778/j.issn.1002-8331.2008.35.005
Authors:JIA Zhi-yu  KANG Rui
Affiliation:Department of Systems Engineering of Engineering Technology,Beihang University,Beijing 100191,China
Abstract:
A method of software reliability forecasting based on the ARIMA(Autoregressive Integrated Moving Average) Model is studied in this paper.It proposes a method which supposes that software failure data can be regarded as time series,and then be forecasted by building correlative ARIMA(p,d,q) model.The basic idea,model formulation and modeling procedures are introduced in detail.The data of Project SS2 in Musa classical data set is forecasted by using this method,and the results shows that the forecasting precision is much higher.So the method is suitable for software reliability forecasting.
Keywords:software reliability  forecasting  Autoregressive Integrated Moving Average(ARIMA)
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号