首页 | 本学科首页   官方微博 | 高级检索  
     


Denitrification with epsilon-caprolactam by acclimated mixed culture and by pure culture of bacteria isolated from polyacrylonitrile fibre manufactured wastewater treatment system.
Authors:C M Lee  C C Wang
Affiliation:Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Chinese Taiwan. cmlee@enve.ev.nchu.edu.tw
Abstract:
The aim of this study is to isolate denitrifying bacteria utilizing epsilon-caprolactam as the substrate, from a polyacrylonitrile fibre manufactured wastewater treatment system. The aim is also to compare the performance of PAN (polyacrylonitrile) mixed bacteria cultures acclimated to epsilon-caprolactam and isolated pure strain for treating different initial epsilon-caprolactam concentrations from synthetic wastewater under anoxic conditions. The result showed that the PAN mixed bacteria cultures acclimated to epsilon-caprolactam could utilize 1538.5 mg/l of epsilon-caprolactam as a substrate for denitrification. Sufficient time and about 2200 mg/l of nitrate were necessary for the complete epsilon-caprolactam removal. Paracoccus thiophilus was isolated from the polyacrylonitrile fibre manufactured wastewater treatment system and it could utilize 1722.5 mg/l of epsilon-caprolactam as a substrate for denitrification. About 3500 mg/l of nitrate was necessary for the complete removal of epsilon-caprolactam. When the initial epsilon-caprolactam concentration was below 784.3 mg/l, the removal efficiency of epsilon-caprolactam by Paracoccus thiophilus was better than that for the PAN mixed bacteria cultures. The growth of Paracoccus thiophilus was better. However, when the initial epsilon-caprolactam concentration was as high as 1445.8 mg/l, both the epsilon-caprolactam removal efficiency by Paracoccus thiophilus and Paracoccus thiophilus specific growth rate were similar to the PAN mixed bacteria cultures.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号