首页 | 本学科首页   官方微博 | 高级检索  
     


Simulations of polaron spin inversion in an organic semiconductor: Comparison of two mechanisms
Affiliation:1. School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China;2. Department of Physics, Jining University, Qufu 273155, People’s Republic of China;1. Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China;2. School of Physical Science and Electronics, Shanxi Datong University, Datong 037009, PR China;3. Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, PR China;4. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China;5. College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China;6. School of Materials Science and Engineering, Shanghai University, Shanghai 200072, PR China;1. Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;2. Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University, Hangzhou 310027, China;3. State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China;1. Laboratoire ICube, Département ESSP, Université de Strasbourg, CNRS, 23 rue du Loess, Strasbourg 67037, France;2. Nazarbayev University Research and Innovation System, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan;3. Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé, Université de Strasbourg, CNRS, 25 rue Becquerel, 67087 Strasbourg, France;4. Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, 23 rue du Loess, Strasbourg 67034, France;5. LMPO, CEA Grenoble, INES, 50 avenue du Lac Leman, 73375 Le Bourget du Lac, France;6. Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110, Greece;7. Advent Technologies SA, Patras Science Park, Stadiou Street, Platani-Rio, 26504 Patra, Greece;1. State Key Laboratory of ASIC and System, School of Information Science and Technology, Fudan University, Shanghai 200433, China;2. Solid-State Electronics, The Ångström Laboratory, Uppsala University, Box 534, Uppsala SE-751 21, Sweden;1. School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China;2. Los Alamos National Laboratory, NM 87545, USA
Abstract:
We present a model study of the effects of two mechanisms, the Rashba spin–orbit coupling and the spin-flip term, on the polaron spin inversion in an organic semiconductor. We find that, while both mechanisms can impact the polaron spin by changing the polaron level from a spin eigenstate to a spin superposition state, substantial difference can be observed in the static and dynamical properties of the polaron. Given the values of model parameters relevant to conjugated polymers, the magnitude of the polaron spin inversion caused by the spin–orbit coupling is much smaller than that by the spin-flip term. When the dynamical properties of the polaron are considered, spin oscillations induced by both mechanisms are observed when the polaron moves along the polymer chain driven by external electric field. Interestingly, the length of the polaron motion during one spin oscillation period remains constant in the case of spin–orbit coupling, while it is enhanced with increasing the driven electric field in the case of spin-flip term, in which larger spin diffusion length and longer spin relaxation time can be expected.
Keywords:Organic spintronics  Polaron  Spin flip  Spin–orbit coupling  Spin oscillation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号