首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于残差网络的改进网络流量分类算法
引用本文:陆煜斌,宣涵,王炎豪,徐凯,朱嘉豪,沈建华. 一种基于残差网络的改进网络流量分类算法[J]. 光通信研究, 2021, 0(1): 1-4,14
作者姓名:陆煜斌  宣涵  王炎豪  徐凯  朱嘉豪  沈建华
作者单位:南京邮电大学 通信与信息工程学院,南京 210003;南京邮电大学 通信与信息工程学院,南京 210003;南京邮电大学 通信与信息工程学院,南京 210003;南京邮电大学 通信与信息工程学院,南京 210003;南京邮电大学 通信与信息工程学院,南京 210003;南京邮电大学 通信与信息工程学院,南京 210003
摘    要:
基于卷积神经网络的网络流量分类算法中,为了提高分类准确度,其结构设计日趋复杂,容易出现梯度下滑甚至梯度消失,导致预测准确度不升反降.文章提出了一种基于残差网络的改进流量分类算法,引入残差网络层代替传统卷积神经网络中的卷积层和池化层,不仅缓解了传统卷积网络因层次太深导致难以训练的问题,同时与传统卷积运算相比,所提出的残差...

关 键 词:网络流量分类  卷积神经网络  残差网络

A Residual Network based Improved Network Traffic Classification Algorithm
LU Yu-bin,XUAN Han,WANG Yan-hao,XU Kai,ZHU Jia-hao,SHEN Jian-hua. A Residual Network based Improved Network Traffic Classification Algorithm[J]. Study on Optical Communications, 2021, 0(1): 1-4,14
Authors:LU Yu-bin  XUAN Han  WANG Yan-hao  XU Kai  ZHU Jia-hao  SHEN Jian-hua
Affiliation:(College of Telecommunications and Information Engineering,NJUPT,Nanjing 210003,China)
Abstract:
Convolutional neural network based network traffic classification scheme suffers many disadvantages such as the complex structure designing,gradient declines or even explodes,the deterioration of prediction accuracy,and etc.A residual network based improved traffic classification algorithm is proposed.The convolution layer and pooling layer in the traditional convolutional neural network are replaced by the residual network layer,which can alleviate the problem that the traditional convolution network is too deep to train effectively.The data feature information learned by the proposed algorithm in the training stage is more comprehensive,and the trained model can also be more accurate.Simulation results show that the improved algorithm has higher accuracy than the traditional neural network,which can be improved from 92.05%to 96.18%.
Keywords:network traffic classification  convolutional neural network  residual network
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号