首页 | 本学科首页   官方微博 | 高级检索  
     


A framework for automated and certified refinement steps
Authors:Andreas Griesmayer  Zhiming Liu  Charles Morisset  Shuling Wang
Affiliation:1. Imperial College, London, UK
2. IIST, United Nations University, Macao, China
3. Security Group, IIT-CNR, Pisa, Italy
4. State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
Abstract:
The refinement calculus provides a methodology for transforming an abstract specification into a concrete implementation, by following a succession of refinement rules. These rules have been mechanized in theorem provers, thus providing a formal and rigorous way to prove that a given program refines another one. In a previous work, we have extended this mechanization for object-oriented programs, where the memory is represented as a graph, and we have integrated our approach within the rCOS tool, a model-driven software development tool providing a refinement language. Hence, for any refinement step, the tool automatically generates the corresponding proof obligations and the user can manually discharge them, using a provided library of refinement lemmas. In this work, we propose an approach to automate the search of possible refinement rules from a program to another, using the rewriting tool Maude. Each refinement rule in Maude is associated with the corresponding lemma in Isabelle, thus allowing the tool to automatically generate the Isabelle proof when a refinement rule can be automatically found. The user can add a new refinement rule by providing the corresponding Maude rule and Isabelle lemma.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号