首页 | 本学科首页   官方微博 | 高级检索  
     


Robust fault-tolerant tracking control design for spacecraft under control input saturation
Authors:Danyal Bustan  Naser Pariz  Seyyed Kamal Hosseini Sani
Affiliation:Department of Electrical Engineering, Ferdowsi University of Mashhad, P.O. Box 9177948974, Mashhad, Iran
Abstract:
In this paper, a continuous globally stable tracking control algorithm is proposed for a spacecraft in the presence of unknown actuator failure, control input saturation, uncertainty in inertial matrix and external disturbances. The design method is based on variable structure control and has the following properties: (1) fast and accurate response in the presence of bounded disturbances; (2) robust to the partial loss of actuator effectiveness; (3) explicit consideration of control input saturation; and (4) robust to uncertainty in inertial matrix. In contrast to traditional fault-tolerant control methods, the proposed controller does not require knowledge of the actuator faults and is implemented without explicit fault detection and isolation processes. In the proposed controller a single parameter is adjusted dynamically in such a way that it is possible to prove that both attitude and angular velocity errors will tend to zero asymptotically. The stability proof is based on a Lyapunov analysis and the properties of the singularity free quaternion representation of spacecraft dynamics. Results of numerical simulations state that the proposed controller is successful in achieving high attitude performance in the presence of external disturbances, actuator failures, and control input saturation.
Keywords:Spacecraft attitude control   Robust fault tolerant   Multiplicative actuator fault
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号