首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of Subcritical Crack Growth on Fracture Toughness and Work-of-Fracture Tests Using Chevron-Notched Specimens
Authors:THOMAS B. TROCZYNSKI  PATRICK S. NICHOLSON
Affiliation:Ceramic Engineering Research Group, Department of Materials Science and Engineering, McMastcr University, Hamilton, Ontario, Canada
Abstract:
A correlation between the plane strain stress intensity factor KI , load, and crack extension has been analyzed for constant displacement and constant loading rate experiments, using chevron-notched, four-point-bend specimens. It is assumed that at the beginning of the experiment the chevron triangle tip is not ideally sharp. As loading continues, the crack initially moves with velocity vt at KI equal to a threshold value Kt . Maximum crack velocity is reached at KI= KIC , the fracture toughness. Depending on the type of material tested, a specific displacement or loading rate must be used to correlate the maximum load with KIc . An error in KIC calculation is estimated if different displacement rates are applied. Repeated loading-unloading work-of-fracture (WOF) experiments generate values related to the resistance of the material to fracture initiation, Kt , only when the crack length approaches 100% of the specimen width. Values related to material's fracture toughness, KIC are not generated in WOF tests.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号