首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进MulSim相似聚类算法的水利信息管控方法
引用本文:李心愉,杨 恒. 基于改进MulSim相似聚类算法的水利信息管控方法[J]. 计算技术与自动化, 2022, 0(4): 112-117
作者姓名:李心愉  杨 恒
作者单位:(山东省海河淮河小清河流域水利管理服务中心,山东 济南 250100)
摘    要:
针对当前水利信息管控能力滞后的问题,提出了多维水利信息可视化管理系统。通过STC89C51RC单片机作为控制模块,该模块外部设置有无线传输模块、电平转换模块等实现水利信息的多方式管控与计算。为了能够在多维数据集中的情况下识别出维度不同的数据信息,提出了MulSim单点与多点相似聚类算法模型,将多维水利数据集的点有效地进行分组,提高了水利数据信息管控能力。通过试验,本研究方法多维水利信息可视化管理系统能够实现多种形式的数据聚类,故障检测点较多,平均可视化时间为42 ms。

关 键 词:信息管控;多维水利信息;可视化管控;聚类算法模型;多维水利信息;故障检测

Water Conservancy Information Management and Control Method Based on Improved MulSim Similarity Clustering Algorithm
LI Xin-yu,YANG Heng. Water Conservancy Information Management and Control Method Based on Improved MulSim Similarity Clustering Algorithm[J]. Computing Technology and Automation, 2022, 0(4): 112-117
Authors:LI Xin-yu  YANG Heng
Affiliation:(Haihe River, Huaihe River and Xiaoqinghe River Basin Water Conservancy Management and Service Center of Shandong, Jinan, Shandong 250100,China)
Abstract:
In view of the current lagging problem of water conservancy information management and control capabilities, a multi-dimensional water conservancy information visualization management system is proposed. The STC89C51RC single-chip microcomputer is used as the control module. The module is externally equipped with a wireless transmission module and a level conversion module to realize multi-mode water conservancy information management and control and calculation. In order to be able to identify data information with different dimensions in the case of multi-dimensional data sets, MulSim single-point and multi-point similarity clustering algorithm models are proposed, which effectively group the points of multi-dimensional water conservancy data sets, and improve the ability of water conservancy data information management and control. Through experiments, this research method multi-dimensional water conservancy information visualization management system can realize various forms of data clustering, with many fault detection points, and the average visualization time is 42 ms.
Keywords:information management and control   multi-dimensional water conservancy information   visualization management and control   clustering algorithm model   multi-dimensional water conservancy information   fault detection
点击此处可从《计算技术与自动化》浏览原始摘要信息
点击此处可从《计算技术与自动化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号