首页 | 本学科首页   官方微博 | 高级检索  
     


Assessment of layered La2-x(Sr,Ba)xCuO4-δ oxides as potential cathode materials for SOFCs
Authors:Anna Niemczyk  Anna Olszewska  Zhihong Du  Zijia Zhang  Konrad ?wierczek  Hailei Zhao
Affiliation:1. AGH University of Science and Technology, Faculty of Energy and Fuels, al. A. Mickiewicza 30, 30-059, Krakow, Poland;2. AGH Centre of Energy, AGH University of Science and Technology, ul. Czarnowiejska 36, 30-054, Krakow, Poland;3. University of Science and Technology Beijing, School of Materials Science and Engineering, Beijing, 100083, China;4. Beijing Municiple Key Lab for Advanced Energy Materials and Technologies, Beijing, 100083, China
Abstract:In this paper, selected layered cuprates with La2-x(Sr,Ba)xCuO4-δ formula are evaluated as candidate cathode materials for Solid Oxide Fuel Cells. Two synthesis routes, a typical solid state reaction and a sol-gel method yield well-crystallized La1.5Sr0.5CuO4-δ, La1.6Ba0.4CuO4-δ and La1.5Sr0.3Ba0.2CuO4-δ materials having tetragonal I4/mmm space group, but differing in morphology of the powder. Fine powders obtained using sol-gel route seem to be more suitable for preparation of the porous cathode layers having good adhesion on the solid electrolyte, but powders obtained after the solid state route can be also successfully utilized. Investigations of structural and transport properties, the oxygen nonstoichiometry and its change with temperature, thermal expansion, as well as chemical and thermal stability are systematically performed, to evaluate and compare basic physicochemical properties of the oxides. At room temperature the average valence state of copper is found to be in 2.2–2.35 range, indicating oxygen deficiency in all of the compounds, which further increases with temperature. The conducted high-temperature X-ray diffraction tests reveal moderate, but anisotropic thermal expansion of La2-x(Sr,Ba)xCuO4-δ, with higher expansion at temperatures above 400 °C occurring along a-axis, due to the oxygen release. However, the corresponding chemical expansion effect is small and the materials possess moderate thermal expansion in the whole studied temperature range. All compounds show relatively high electrical conductivity at the elevated temperatures, related to the Cu2+/Cu3+ charge transfer, with the highest values recorded for La1.5Sr0.5CuO4-δ. Comprehensive studies of chemical stability of the selected La1.5Sr0.5CuO4-δ material with La0.8Sr0.2Ga0.8Mg0.2O3-δ solid electrolyte revealed complex behavior, with stability being dependent apart from temperature, also on morphology of the powders. A model describing such behavior is presented. While it is possible to minimize reactivity and characterize electrochemical properties of the La1.5Sr0.5CuO4-δ-based cathode layer, usage of the buffer layer is indispensable to maintain full stability. It is shown that mutual chemical compatibility of La1.5Sr0.5CuO4-δ and commonly used La0.4Ce0.6O2-δ buffer layer material is excellent, with no reactivity even at 1000 °C for prolonged time. Laboratory-scale fuel cell with the La1.5Sr0.5CuO4-δ cathode sintered at the optimized temperature is able to deliver 0.16 W cm?2 at 800 °C while fueled with wet hydrogen.
Keywords:Layered cuprates  Cathodic polarization  Chemical stability  LSGM  Buffer layer  SOFC
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号