首页 | 本学科首页   官方微博 | 高级检索  
     


Elevated temperature pressure swing adsorption process for reactive separation of CO/CO2 in H2-rich gas
Authors:Xuancan Zhu  Yixiang Shi  Shuang Li  Ningsheng Cai
Affiliation:Key Laboratory for Thermal Science and Power Engineer of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, PR China
Abstract:Purification of CO and CO2 to the ppm level in H2-rich gas without losing H2 is one of the technical difficulties for fuel cell power systems. In this work, a two-column seven-step elevated temperature pressure swing system with high purification performance was proposed. The concept of reactive separation by adding water gas shift catalysts into the columns filled with elevated temperature CO2 adsorbents was adopted. The H2 recovery ratio and H2 purity were greatly improved by the introduction of steam rinse and steam purge, which could be realized due to the increasing operating temperature (200–450 °C). An optimized operating region to both achieve high efficiency and low energy consumption was proposed. The optimized case with 0.09 purge-to-feed ratio and 0.15 rinse-to-feed ratio could achieve 99.6% H2 recovery ratio and 99.9991% H2 purity at a stable state for a feed gas containing 1% CO, 1% CO2, 10% H2O, and 88% H2. No performance degradation was observed for at least 1000 cycles. The proposed (ET-PSA) system possessed self-purification ability while the columns were penetrated by CO2. It is however suggested that periodical heat regeneration should be adopted to accelerate performance recovery during long-term operation.
Keywords:Elevated temperature pressure swing adsorption  Potassium-promoted hydrotalcite  CO deep purification  Hydrogen production  Process optimization  Fuel cell
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号